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The problem of diffusion with absorption and trapping sites arises in the theory of molecular signaling inside
and on the membranes of biological cells. In particular, this problem arises in the case of spine-dendrite
communication, where the number of calcium ions, modeled as random particles, is regulated across the spine
microstructure by pumps, which play the role of killing sites, while the end of the dendritic shaft is an
absorbing boundary. We develop a general mathematical framework for diffusion in the presence of absorption
and killing sites and apply it to the computation of the time-dependent survival probability of ions. We also
compute the ratio of the number of absorbed particles at a specific location to the number of killed particles.
We show that the ratio depends on the distribution of killing sites. The biological consequence is that the
position of the pumps regulates the fraction of calcium ions that reach the dendrite.
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I. INTRODUCTION

The post-synaptic part of a synapse is usually a dendritic
spine, a microstructure located on a dendrite of a neuron (see
Fig. 1) [1-4]. The spine geometry consists of a nearly spheri-
cal head connected to the dendrite by a narrow cylindrical
neck. Calcium ions enter the spine head through glutamate
gated channels following the release of glutamate neu-
rotransmitters by the presynaptic terminal. The communica-
tion between a dendritic spine and the dendrite depends on
the ability of the calcium ions to pass through the cylindrical
neck to the dendrite. When ions enter the neck, they diffuse
and either reach the dendrite or are extruded on their way to
the dendrite by pump proteins located on the lateral surface
of the neck [1,5]. The number of calcium ions that arrive at
the dendrite and the calcium contents of the spine are regu-
lated by the geometry of the neck and by the contents of the
spine. The contents include organelles, such as the endoplas-
mic reticulum, calcium buffer proteins such as calmodulin,
calcium stores, actin-myosin proteins, and pumps on the
spine membrane. In this paper, we focus on the role of the
spine neck in spine-dendrite communication, which is an
area of intense experimental research (see, e.g., Refs. [1,3]).
We adopt a simplified one-dimensional model of the diffu-
sive motion of calcium ions in the neck, in which the termi-
nation of ionic trajectories by pumps is described as “kill-
ing,” while termination in the dendrite is described as
“absorption.” The killing measure (the probability per unit
time and unit length to terminate a trajectory at a given point
at a given time) has been introduced into the chemical reac-
tion literature in Ref. [6] (see also Refs. [7-10]).

An ion can pass through a killing site many times without
being terminated. In contrast, an absorbing boundary termi-
nates the trajectory with probability 1 the first time the tra-
jectory gets there. Thus we distinguish between two random
times on a trajectory, the time to be killed, denoted 7, and the
time to be absorbed, denoted 7. We need to find the probabil-
ity Pr{7>T|y} of an ion getting killed (pumped out) in the
neck before it is absorbed at the boundary (the dendrite),
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given that it started at a point y in the neck. The ratio

_ Pr{r<Tly}
* T Pr{r> Ty}

is the fraction of absorbed to killed (pumped) particles. We
also need to calculate E[T|7>T,y], the mean time to be
killed, given that the particle is Kkilled, as well as
E[7|T> r,y], the mean time to absorption, given that the
particle is absorbed. An application of our model in neurobi-
ology concerns calcium regulation in the dendritic spine and
in the dendrite. In dendrites of neurons, ions are constantly
exchanged between compartments and when the concentra-
tion of calcium ions in the dendritic shaft rises above a
threshold value, some specific cascades of chemical reactions
are initiated that can lead to a new physiological stage, where
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FIG. 1. Extrusion of an ion from the spine neck. A dendritic
spine is a microstructure located on the dendrite of neurons, con-
sisting of a round head connected to the dendrite through a cylin-
drical neck. Its function is still unclear. After ions enter through the
head, either they are pumped out (right figure) or they reach the
dendrite (left picture). The number of ions reaching the dendrite is
regulated by the number and the distribution of pumps and the
length of the spine neck.
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the synaptic properties are modified. For example, the bio-
physical properties of the synapses or the number of channel
receptors can be irreversibly changed [4,11,12]. The process
that consists of changing the synaptic properties is known as
synaptic plasticity. Today, the mechanisms of induction of
synaptic changes are still unclear, but it has been demon-
strated recently [13] that the induction process can be af-
fected by the dynamics of the spine-dendrite coupling. The
communication between a dendritic spine and the dendrite
depends on the ability of the ions to pass through the cylin-
drical neck of the spine (see Fig. 1). The measure of this
ability is the parameter R... When ions leave the spine head
and enter the neck, they diffuse and either reach the dendrite
(with probability Pr{T> 7|y}), or, as mentioned above, are
extruded by pump proteins on their way to the dendrite [1,5].
In a simplified homogenized model proposed in Ref. [13],
the number of ions filtered by the neck has been estimated
and compared with experimental results. This number de-
pends on the distribution of pumps along the neck and on the
efficiency of the pumping process. The precise comparison
with experimental data in Ref. [13] made it possible to pre-
dict that changing the length of the spine neck (which occurs
under specific conditions, see, for example, Ref. [3]) is suf-
ficient to regulate precisely the number of ions arriving at the
dendrite. Spine-dendrite calcium signaling ([1,5]) and its
regulation through specific microstructures, such as the spine
neck, is crucial for the induction of synaptic plasticity, which
underlies learning and memory. The mean time E[¢|y] an ion
spends inside the neck can be written as

E[tly]= E[t|7 < T,yIPr{7 < Ty} + E[{|T < 7,y]Pr{T < 7y}
= E[77 < T,yIPr{r < Tly} + E[T|T < 7,y]Pr{T < 7ly}.

The rate 1/E[t|y] is the total probability flux out of the neck.
This is a measurable quantity that can be used to prove that
ions diffusing into the dendrite originate in the spine head.
Indeed, calcium that enters the spine head through the
glutamate gated channels at the top of the spine head takes
much longer to reach the dendrite than calcium that enters
through voltage gated channels. This is due to the much
faster propagation of the membrane depolarization than
movement by diffusion. In a biological context the final dis-
tribution of particles between absorption and killing indicates
the future changes in the steady properties of the synapse.
This is a general principle in cell biology regulation. It is
fundamental for the homeostasis of a living cell to regulate
the number of proteins or small molecules it contains and to
maintain this number constant in the absence of external in-
put. This is, for example, achieved through an equilibrium
between synthesis and hydrolysis mechanisms. At a molecu-
lar level, when molecules reach the active sites of free en-
zymes by a Brownian random walk, either the molecules are
hydrolyzed or nothing happens (see Ref. [14] for a stochastic
description) and after some time, the molecules are absorbed
or enter different organelles. This is what happens in signal
transduction, as in synapses of neurons or in sensor cells. In
some cases, the stability and the function of the cell depends
on the efficiency of such dynamical processes. In addition,
the geometry of the cell participates in the regulation of the
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number of particles, such as ions, that reach specific loca-
tions. In the present work, we are interested in estimating the
probability that an ion survives in a medium containing
many pumps. We compute the probability to arrive at a spe-
cific location before being killed (see Fig. 1) as a function of
structure and pump distribution. In the case of a dendritic
spine, we assume that the cylindrical neck can be approxi-
mated by a one-dimensional interval, and the computations
are given in a one-dimensional model. The one-dimensional
approximation is valid when the radius of the spine neck is
sufficiently small, otherwise, the small pumps cannot affect
the normal diffusion process (see Ref. [15]). We will see that
various pump distributions affect the concentration of ions in
the neck; we compare a uniform distribution along the spine
neck, modeled as a constant killing rate, to an accumulation
of pumps in “hot spots” at some specific locations (for ex-
ample, at the base of the dendritic spine). In either case, we
estimate the flux of ions into the dendrite. The reduced one-
dimensional model of Brownian motion with killing and ab-
sorption is investigated in various types of killing sets. It is
of interest to determine the influence of spatial distribution of
the killing measure on the global survival probability of the
population. Absorption and killing are expressed differently
in the Fokker-Planck equation (FPE) for the transition prob-
ability density function (pdf) of the Brownian motion. While
total absorption at the boundary is expressed as a homoge-
neous Dirichlet boundary condition, killing appears as a re-
action term in the FPE [16]. Our main results are general
expressions for the probabilities, ratio, and mean times in
general, and in particular, we give explicit expressions as
functions of the geometry and distribution of killing sites in
the one-dimensional model. We also provide a biological in-
terpretation of the results.

II. KILLING MEASURE AND THE SURVIVAL
PROBABILITY

We consider a Brownian motion (particle) in a cylinder,
whose lateral boundary contains many small absorbing
holes, one base is reflecting and the other absorbing. This
model can be approximated [15] by a one-dimensional
Brownian motion on an interval with one reflecting and one
absorbing endpoint, and a killing measure inside the interval.
The strength of the killing measure is related to the absorp-
tion flux of the three-dimensional Brownian motion through
the small holes on the boundary of the cylinder. The killing
measure k(x,?) is the probability per unit time and unit length
that the Brownian trajectory is terminated at point x at time ¢
[16]. The survival probability and the pdf of the surviving
trajectories can be derived from the Wiener measure [17].
Indeed, the joint (defective) probability density of finding a
trajectory at point x and the distribution of the random time
at which it is terminated 7 is

u(x,t[y)dx =Pr{x(t) € x +dx, 7> t|x(0) = y},

which is the solution of the boundary value problem [6]
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u,=u,—k(x,)u, forxelR, >0,

u(x,0) = 8(x - y). (1)

In the case that k(x,7) =V, and the diffusion coefficient is D,
we have

du(x,t Fu X, 1
( y)=D ( zy)—Vou(x,ty), forxeR, >0,
ot ox
u(x,0[y) = oy — x). (2)
The solution is given by
1 (x—y)?
u(x,tly) = ———=exp — Vot - ) (3)
Y 2\ Dt p{ 0 4Dt

The probability per unit time of being killed inside the inter-
val [a,b] at time 1 is

b
Pr{x(7) € [a,b],7=1t|x(0) =y} = f k(x,t)u(x,ty)dx,

while the probability of being killed in the interval before
time ¢ is

t b
Pr{x(7) € [a,b],7< t|x(0) =y} = f f k(x,t)u(x,t|y)dx dt.
0Ya

The probability of ever being killed in the interval is

w (b
Pr{x(7) € [a,b]|x(0) =y} = J f ke, ) u(x,t|y)dx dt,
0 Ja

and the density of ever being killed at x is therefore

Pr{x(7) =x|x(0) = y} = J k(x,t)u(x,t|y)dt. (4)
0

The survival probability is the probability that the trajectory
still exists at time ¢, that is,

S(t)=Pr{r>t|x(0) =y} = | u(x,t]y)dx.
R
For the case k(x,7)=V, Eq. (3) gives
Pr{7>t|x(0) =y} = f u(x,tly)dx = e, (5)
R

This is exactly the rate at which particles disappear from the
medium. The rate is exponential, so that out of N, initial
independent Brownian particles in R the expected number of
particles that have disappeared by time t is Ny(1—e~"0"). The
probability of being killed at point x, given by Eq. (4), is
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| x—y)?
P(x|y) = Vof :exp{— Vot — Q}dt
NaD

1 |V V
:5\/%6)(1){— \/g|x—y|}. (6)

We assume henceforward that the killing measure is time
independent.

III. ABSORPTION VERSUS KILLING

We consider now a particle diffusing in a domain () C R”
with a killing measure k(x) and an absorbing part 9}, C Q)
of the boundary Q). Thus the trajectory of the particle can
terminate in two ways: it can either be killed inside ) or
absorbed in dQ),. The difference between the killing and the
absorbing processes is that while the trajectory has a finite
probability of not being terminated at points x, where
k(x) >0, it is terminated with probability 1 the first time it
hits d€),. Thus the trajectory may traverse many times killing
regions, where k(x)>0, but it cannot emerge from the ab-
sorbing part of the boundary.

A. Definition and basic equations

We define two random termination times defined on the
trajectories of the diffusion process: the time to killing, de-
noted 7, and the time to absorption in d€},, denoted 7, which
is the first passage time to d(),. We calculate below the prob-
ability Pr{T<r7|y}, and the conditional distribution Pr{r
<t| 7<T,y}. We consider the trajectories of the stochastic
differential equation

dx =a(x)dt + B(x)dw(r) for x(r) € Q, (7)

where a(x) is a smooth drift vector, B(x) is a smooth diffu-
sion matrix, and w(r) is a vector of independent standard
Brownian motions [16]. We assume that a killing measure
k(x)=0 is defined in Q and k(x)>0 on a set of positive
measure. The transition probability function of x(z) satisfies
the Fokker-Planck equation

ap(x,tly)
ot

= Lp(x,tly) — k(x)p(x,1ly) forx,y € Q, (8)
where the forward operator £ is defined by

n

oS PO S ddwpiy)

ax" 9 x/ =1 ax'

Lp(x,t
ij=1

)

and
o(x) = %B(x)BT(x).

The forward operator £ can also be written in the divergence
form

Lp(x,tly) ==V - J(x,tly), (10)

where the components of the flux density vector J(x,¢
defined as

y) are
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n

y)=-2

J=1

da" (x)p(x,1ly)
oxt

Ji(x,t

+d'(x)p(x,tly). (11)

The initial and boundary conditions for the Fokker-Planck
equation (8) are

px,0ly)=68x-y) for x,y e, (12)

plx,fly)=0 for t>0,xedQ, ye, (13)

J(x,tly) - v(x)=0 for t>0,x € d0-0Q, y € Q.
(14)

The transition pdf p(x,t|y) is actually the joint pdf

plx.tly)dx =Prix() € x +dx, T>t,7>tly},  (15)

that is, p(x,z|y) is the probability density that the trajectory
survived to time ¢, i.e., was neither killed nor absorbed in
dQ,, and is located at x. We begin by showing that

Pr{T < 7ly} = f ) f k(x)p(x,ty)dxdt (16)
0 QO

by two different derivations. First, assume that the entire
boundary is absorbing, that is, 9),= (). Then the probability
density of surviving up to time ¢ and being killed at time 7 at
point x can be represented by the limit as N— o of

Prixy(t; ) € Qxp(tyn) € Q,...xp5(1)
x(0) =y}

N
:Uf f 11 7
alao 0 jo1 V(2mAr) det o(x)(t;_1 y)

1
X exp{— E{yj_x(tj—l,N)

—alx(ti_y )AL 07 [x (11 )]

=x,t<T<1t+Ar

X{y; = x(t_y y) —alx(t;-, y) AL}

x{1 - k[x(tj,N)At]}] k(x)At, (17)
where
Ar= ]% t;n=JAt
and
x(ton) =y

in the product. The limit is the Wiener integral defined by the
stochastic differential equation (7), with the killing measure
k(x) and the absorbing boundary condition [18]. In the limit
N—o the integral (17) converges to the solution of the
Fokker-Planck equation (8) in () with the initial and bound-
ary conditions (12) and (13). Integrating over {) with respect
to x and from O to % with respect to ¢, we obtain, in view of
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Eq. (15), the representation (16). A second derivation begins
with the integration of the Fokker-Planck equation (8),

l=fwﬂg J(x,ty)-v(x)dedfof k(x)p (e, tly)dxdr.
0o Jao o Jo
(18)
We write
J(tb’)=3€ J(x,ty) - v(x)dS, (19)
9]

and note that this is the absorption probability current on ¢€).
Therefore, in view of the boundary conditions (13) and (14),
J3J(t|y)dt is the total probability that has ever been absorbed
at the boundary ¢€),. This is the probability of trajectories
that have not been killed before reaching d€),. Writing Eq.

(18) as
fmJ(tLy)dt:l—foJ k()p(x,t
0 0 9)

we obtain Eq. (16). The probability distribution function of T
for trajectories that have not been absorbed in (), is found
by integrating the Fokker-Planck equation with respect to x
over () and with respect to 7 from O to ¢. It is given by

y)dxdt,

PnT<t,7>T
PHT < t]r> Ty} = DL = 67> T}

Pr{7> Tly}
fjk(x)p(x,sy)dxds
0Ja
=" . (20)
J f k(x)p(x,sly)dxds
0o Jo
Hence
f” f“f k(x)p(x,s|y)dx ds dt
0 Jr Q
E[TIT< 1,y]= — . (21)
f f k(x)p(x,sly)dx ds
0o Jo
Equivalently,
f‘” sf k(x)p(x,s|y)dx ds dt
0o Jao
E[TIT<ryl=—— , (2
f f k(x)p(x,sly)dx ds
0o Jo

which can be expressed in terms of the Laplace transform

plx.qly) = f px,sly)eds
0

as
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f )= e gly)ae
Q q

E[TIT< 1,y]=-

f k(x)p(x,qly)dx
Q

J .
=— (9—c](ln{fQ k(x)p(x,qu)dx})

The conditional distribution of the first passage time to the
boundary of trajectories, given that they are absorbed, is

f J(S|y)ds

0

l—focf k(x)p(x,s
0o Jao

Thus the mean time to absorption in (), of trajectories that
are absorbed is given by [19]

q=0

(23)

q=0

Pr{r<tT> 7.y} = . (24)

y)dxds

E[AT > 7,y] =J Pr{7>t|T > 7,y}dt
0

j‘” sJ(sly)ds

0

= = . (25)
l—f f k(x)p(x,s|y)dxds
0 J0
The survival probability is given by
S(ly) = f ple.ty)dx. (26)
Q

B. Killing at hot spots (trapping) in a finite interval

We derive explicit estimates of the survival probability
with a Dirac killing measure and of the conditional mean
time to absorption (before being killed) in a finite interval.

1. Explicit decay of the survival probability in one
dimension

To compare the survival probability of Brownian motion
with and without a Dirac killing (a trap or hot spot) at a point
x, in the interval [0, 77], with absorbing boundaries, we write
the boundary value problem (8)—(13) as

’9’4(x’tx1’)’) &Zu(x9t-xl’y)
=D >
at ox

- V(x — x))u(x,t|x,,y)
for 0<x<mr,

u(x,0

xl9y) = 5()5_)7),

u(0,1

xp,y) = u(mtjx;,y) =0 (27)

and recall that the Green function of the free particle prob-
lem, where V=0, is
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o]
2 2
y) == sin nx sin nye ™.
T

n=1

G(x,t

Therefore the survival probability of Brownian motion in the
interval is

Z sin2n—1
s ( )ye—(2n— D2

x>
Y= -1

So(tly) = f G(x,t
0

n=1

Using the Laplace transform, the solution u(x,#|x;,y) of Eq.

(27) with V>0 is given by

A A Vé(x3q X ) a
iy(x,qlx1,y) = Glx.gly) - ——————G(x,.qly),
1 +VG(x,,q|x,
(28)
where
A 2 < sin nx sin ny
Glrgly)==2 ——5—. (29)
n=1 q +n
Note that

4 sin(2n - 1)y
e iy PENC T

Solqly) = f Glx,q
0

According to Eq. (26), the survival probability Sy(¢]y) is
given by

Syltlxy,y) =J uy(x,t|x;,y)dx (30)
0

and the Laplace transform is

Svigly) = f dyl(x,qlxy,y)dx. (31)
0

Using Eq. (28), we find that the survival probabilities, with-
out and with the Dirac killing, differ by

VG(x,qly) 4

1+ Vé(xl,q x) ™

Solqly) = Sy(glx;,y) =

- sin2n - 1)x;
> Q2n-1D[g+@2n-1)?*

(32)

n=1

The difference So(q|y)—Sy(g|x;,y) has no poles other than

the zeros of 1+VG(x;,q|x,), which are written as g=—¢&,
where £ is the smallest positive root of the equation (see
Appendix I)

Esin émr

v (33)

sin &(7r — x;)sin x| = —

For small V, we have
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2
g=—-1—-V=sin(7 - x,)sin x; + O(V?). (34)
T

The result (34) means that killing is most effective when the
killing site is in the middle of the interval.
For large V and x; > 7/2, we have

L)
== X1 " X:f V+ V2 ’

which means that for large killing V the decay rate is the
same as that in the interval enclosed between the killing site
x; and the more distant endpoint of the interval [0, 7], with
absorbing boundaries. Note that the decay rate in this case is
independent of the initial point y. See Appendix I for details.

2. The conditional Mean First Passage Time (MFPT)
E[T|T<r,y]

We use Eq. (23) to write the conditional MFPT E[T|T
<7,y] as

v}

9
E[TIT < 7yl=— —In{p(x;.q
(96] q=0

Cxyd + 37+ 277) — (] +y7)

6(m—x,)y
T
X——————— 36
T+ V(m—x,)y (36)
(see Appendix II for details).

C. The ratio of absorption to killing

According to the Fokker-Planck equation (8), the time-
dependent ratio R(¢) of the absorbed particles (particles leav-
ing the domain, before being killed) to the killed particles at
time ¢ can be defined as

f J(x,ty) - v(x)
R(t) = 2k . (37)
fk(x)p(x,ty)dx
QO

More interestingly, we can define a steady state ratio R.,
which is the total number of absorbed particles to the total
number of killed particles after infinite time, by the expres-
sion

f ’ f JCr.tly) - vlx)dSidr f JGxly) - wlx)ds,
_Jo Jan, _ 1M

s

f"‘f k(x)p(x,tly)dxdt f k(x)G(x|y)d x
0o Ja Q

(38)
where G(x|y) is defined by the equation
- p(y) = LG(x,ly) — k(x)G(x]y) forx,y e Q@  (39)

with the forward operator £ defined in Eq. (9), p(y) is the
initial density, and J(x|y) is the flux density vector at point
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x, computed with respect to the function G(x|y). When
p(y)=08(y), G is the standard Green function with boundary
conditions given by Eq. (13). We can define another ratio of
interest: in a permanent regime, when a flux enters the do-
main through a part of the boundary, it is partitioned into the
flux of absorbed and killed particles. When a steady state
regime is achieved, we can define the ratio R, as above. We
denote by d(); the part of the boundary, where a steady flux
enters the domain. The steady state Fokker-Planck equation
becomes

0= Lp(xly) — k(x)p(x|y) for x,y € Q, (40)

where the forward operator £ is defined by Eq. (9) and the
boundary conditions are

plxly)=0 forx € dQ,y € Q,,

J(x]y) - v(x) =0 forx € 90 -9Q, -0,y € Q, >0,

J(x]y) - v(x) = - ®(x) for x € 9.

The time-independent flux is ®(x)=0. The external steady
state flux of absorbed particles is

Ja=f J(x|y)v(x)dsx (41)
[7%9)

a

The total inward flux is

]‘:J J(xLy)~v(x)de:f ®(x)ds,. (42)
aQ; 8,

i

We define the ratio R, as

f J(x|y) - v(x)dS,
a0,

R,=

f k(x)p(x|y)d x
Q

f q)(x)de—f k(x)p(x|y)dx

a0, Q

== . (43)
J X k(x)p(xly)dx

The second part of the identity is a consequence of conser-
vation of matter.

D. The one-dimensional case

The fluxes R., and R, can be explicitly evaluated in one
dimension for a finite interval. The ratio R; was computed in
Ref. [13] in the case of an interval [0,L], when the killing
measure was uniformly distributed. We assume now that the
inward flux at x=L is a constant ® and at x=0 an absorbing
boundary condition is given. We consider here the case
where the killing is a Dirac k(x)=kd&(x—x,) located at a
single point x;, and k is a constant. This case can be viewed
as a simplified model of calcium flow in a narrow and long
neck of a dendritic spine with a cluster of pumps at x;. The
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particles are only driven by diffusion, so the steady state
equation (40) becomes

P
D ;(2)() —ké(x—x)px)=0 for 0<x<L,
X
dp(L
M)=®’
ox
p(0)=0,
and the ratio is
dp(0
b 1;( )
Ry=———. (44)
kp(x)
An explicit computation of p(x) gives
DO
Dp'(L)y=——""—"",
1+—(L-
D( x1)
k®(x; - L)
kp(x,) = —1,
I+—(L-
D( xy)
and
D
Ry=—""—. (45)
k(L—.Xl)

The result can be generalized to the case of a two hot spots in
a straightforward manner.
The ratio R, decays as

1

R,~——— for L—® (c=const)
cosh(cL)

if the killing measure is uniform in the interval [0,L] [13].
This decay, compared to Eq. (45), shows that any redistribu-
tion of the killing sites affects the ratio (see discussion in
Sec. IV). In the same spirit, we give an explicit expression
for R., in the case of a finite interval [0, L], where particles
are free to leave the domain at the points O and L. We assume
that initially the particles are located at a point x;. Here the
killing occurs at the point y<x;. Green’s function for this
problem, defined in Eq. (39), is the solution of the boundary
value problem

&+
DEG(xbi) —k(x)G(x|y) == 8(x;) for x,y €[0,L],
G(0[y)=0, G(Lly)=0.
An explicit solution of this problem gives the ratio R, as
given by
(L—Xl)k

.
D@+——Z—ﬂ—ﬁ>
y D

R,=
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Ratio R
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L {(um)

FIG. 2. Ratio of “absorbed” to “killed” particles, R, versus the
length of the spine neck, L, for two types of pump distribution.

Dashed curve: uniform distribution of pumps. Plain curve: all
pumps are accumulated near the base of the spine neck.

IV. CONCLUSIONS, APPLICATIONS, AND PERSPECTIVE

We have provided in this paper a general mathematical
framework for the computation of the distribution of “killed”
and “absorbed” particles, after they flow into a bounded do-
main. The ratios R, or R, of “absorbed” to “killed” particles
are in general difficult quantities to estimate analytically.
However, in one dimension the explicit dependence of the
ratio on the geometry can be computed; we analyzed here
two extreme distributions: a uniform distribution and a Dirac
killing measure. Formulas (45) and 1/cosh(cL) (c=const) of
Ref. [13] prove that the ratios depend on the killing distribu-
tion. For a general three-dimensional domain, R, can only be
estimated in asymptotic cases, where the absorbing boundary
occupies a small portion of the boundary or when the support
of the killing measure is small (see Refs. [20-23]). To illus-
trate the effect of the pump distribution on the ratio R,, we
have plotted in Fig. 2 two ratios associated with two types of
distributions. The numbers relevant to the figure are N=10
pumps located on the spine neck (see Ref. [13]), a diffusion
constant D=400 ,umz/ s, and extrusion rate y=16.6 s~!. For
these values, we get the ratio k/D=Ny/D=2.4. We assume
that most of the pumps are accumulated near x;=0, close to
the bottom of the spine neck. When the pumps are uniformly
distributed, the ratio is given by Ry(L)=1/[cosh(bL)-1],
where b=VNy/D=1.55. The curve representing R, for a uni-
form distribution is in dashed line. For a spine of neck length
of 1.4 um, there is an inversion in the dominant ratio of
extrusion. For example, for a spine length of 1 um, when the
pumps are uniformly distributed, R;=0.4, which corresponds
to ten absorbed ions, four arrive at the dendrite. If the pumps
are accumulate at the base of the neck, the ratio is about 0.7,
corresponding to seven ions arriving at the dendrite and ten
are absorbed. It is interesting to note that changing the pump
distribution can have such effect. In the general context of
microstructures in biological systems, the ratio R, provides
information about the total distribution of particles. When
the killing measure is redistributed and a critical value of the
ratio R, is attained, new biophysical processes can be initi-
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ated that affect irreversibly the physiological properties of
the microstructure. Indeed, if enough particles enter the
structure and stay sufficiently long, they bind to a large num-
ber of molecules. When a critical number of bonds are made,
a cascade of chemical reactions is initiated. Thus a threshold
can be reached by simply redistributing the killing measure.
The implementation of these changes at a molecular level is
yet to be identified. The mean conditional time of being ab-
sorbed before killing, E(T|7<T), reveals not only the time
spent inside the structure, but also how long it takes on the
average for particles to arrive at a specific compartment. The
spine-dendrite communication can be described in terms of
quantities such as R and E(T|7<T). First, the regulation of
calcium ions that reach the dendrite can be achieved by vari-
ous mechanisms. One possibility to decrease R; is to increase
the length of the neck, which really occurs in vitro experi-
ments [13]. In that case, if the distribution of the killing
measures is scaled with the dilation of the neck, the ratio R;
changes, with no need to change the total killing measure
(e.g., the number of pumps). A second possibility is to redis-
tribute the killing measure in a way that affects the ratio R,
as shown in our computations (e.g., from uniform to accu-
mulation at a hot spot). We can predict from expression (45),
that moving all the calcium pumps at the bottom of the spine
neck reduces the number of ions arriving at the dendrite.
Finally, the number of pumps can also be changed. All pos-
sibilities are expected to be observed and any particular
choice should be understood in the context of its function.
We expect that the distribution of pumps across the spine
neck to be highly dynamic and driven by the mean electrical
activity of the dendrite. In particular, we may wonder how
such distribution changes in the wake of applying protocols
such as long term potentiation (LTP), which lead to long
term changes at the synapse level [4]. No results seem to be
known about the effect of LTP on the pump redistribution in
spines. In reality, as studied in Ref. [5], the movement of
ions inside the spine neck is not purely Brownian, but has a
drift component, which affects the dynamics and changes the
ratio. The mean time E(7|7>T) to arrive at the dendrite was
used in Ref. [13] to confirm that calcium ions arriving at the
dendrite originate at the spine head (not in external sources).
This result is derived by comparing the experimental time
scale with E(7|7>T). The mean time E(7|7>T) is thus a
fundamental parameter in the context of spine-dendrite com-
munication, because it measures the mean time calcium ions
enter the dendrite, and is related to the induction time of
cascades of reactions, involved in modifying the synaptic
weight. Changing the E(7|7>T) is a part of the spine regu-
lation process. This can be achieved by various ways: chang-
ing the spine neck length, changing the number of pumps
and their distribution. Various biological investigations (see,
for example, Ref. [1]) are dedicated to the elucidation of how
such regulation is achieved at a biochemical level. Finally,
the present computations assume that the neck width is
small. If this is not the case, the one-dimensional approxima-
tion of the cylinder is no longer valid and pumps become
insignificant.

APPENDIX A

We provide here the details of the computations used in
Sec. Il B 1. The function G(x,,q/|x,) is given by
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R 2 < sin nxsin nx
Glenglr) = =2 ———5—. (A1)
n=1 qtn
For a e R, we will use the following identity:
cos 1 < (1) cos(ax
meola) _ 1 o W acolad 0 pci<nm,
2sin(ax)  2a o a—n
(A2)
where x is replaced by x— 7. If we denote by F' the function,
- cos(nx)
F(Z) = 2 (A3)
n=1 4 +n
then by Eq. (A2),
—
1 wcos[V=q(z—
F(o)= -+ - ey o 4 (A4)
2q  2\-gsin(N-qm)
Finally,
A F(0) = F(2x,)
Glxglr) =————+—
cos[ = g(2x; = )] - cos[\— g(m)]
= - . T :
2\— gsin(\— gr)
(A5)

Remark. The expansion of the zeros for V small and V large
in Sec. III B 1 are obtained by a regular perturbation in term
of the potential and the inverse of the potential.

APPENDIX B

We provide here the details of the computations used in
Sec. III B 2. The Laplace transform of Eq. (27) with absorb-
ing boundary conditions is given by

+o .
2V sinnxsinny |

i(x,qly) =- T—ii(x1,q]y) + G(x.qly),
ar 1 q +n
(B1)
which gives for x=x;
X G(x1,qly)
i(x,.qly) = — (B2)

2V  sinnx;sin ny
I+ =2 =5
T qg+n

and

2
—Inp(x;,qy)
dq

+00
J 2V < sin nx;sin n
¥ &—ln<1 2 #)
q

'316(
=—InG(x;,
dq d T q+n2

= a(x)|y) + Bx|y)
with
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oo

E sin nx;sin ny

4
Jd A n=1 n
alyly)= —InGx;.qly)| =-75— :
aq q=0 E sin nx;sin ny
2
n

n=1
and

+00
1% 2V  sin nx;sin ny
Blxly) = - —ln<1+—2—2 )
dq T q+n 4=0

<)
2V & sin nx;sin ny

4

v n

n=1

+o0 .
2V sin nx;sinn
2SS SNSRI

T n2

For x,,y € 10, 7{, it is well known that
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2% sinnx;sinny  (m—x))y
n’ T

T =1

2O sinnxsinny  x o +y?

= —14 y:;y(x%+yz+277'2)——(1 y),

e n 6 6
hence

E[TIT < 7,y]=— al(x||y) + B(x|[y)
Cxpy(d +y e+ 2m) - wla] + )
- 6(7T—x1)y

ko

><—5
m+ V(T —x))y

which is Eq. (36).
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